

From Al Act to Structured Testing of Al Systems

AI TEF (Testing and Experimentaion Facility) for Smart and Sustainable Cities and Communities in Digital Europe Programme

Katya Mishchenko Senior Scientist, RISE kateryna.mishchenko@ri.se

Al Act translation to technical testing and Market Analysis Optimization, Al Testing Applied Al

Nishat Mowla Senior Researcher, RISE nishat.mowla@ri.se

Trustworthy AI
AI Act translation to technical
testing
Machine Learning Scientist
Applied AI applications

Kabir Fahria Research Engineer, RISE <u>kabir.fahria@ri.se</u>

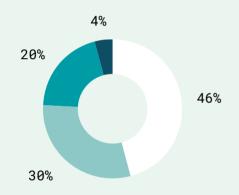
Software development Testing AI Machine Learning Operations Large Language Models (LLMs)

Agenda

Advancing and outreaching Al testing by Citcom.Al/RISE

Testing AI approach in Citcom.AI

TEF Collaborations


Expanding AI Testing Horizons

3 993

Net sales, MSEK

Operating result: 22 MSEK Operating margin: 0,6%

Distribution of turnover

Industry	1 831 MSEK
Public financiers	1 179 MSEK
State base funding	812 MSEK
FU funds	171 MSFK

Close to

3 300

employees

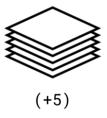
We are available at Places around

130+

Test and demonstration environment

78

Satisfied Customer Index (2023)


TEFTesting and Experimental Facilities

Advancing and outreaching AI testing by Citcom.AI at RISE

This project has recieved co-funding from the European Union's Digital Europe Program under Grant Agreement No 101100728

About testing Al

What:

Testing AI systems is a vital part of the development and deployment of AI systems since it ensures their accuracy, reliability, safety & security, efficiency and effectiveness

Why:

Al testing builds trust and confidence in realworld applications and helps in identifying and rectifying potential issues early, thereby improving the quality of software releases.

How:

One instrument to emphasize the importance and ensure the safety and reliability of Al systems is the **Al Act** .

It lays down harmonized rules on AI, aiming to balance the socio-economic benefits and potential risks of AI technologies placed on the European market.

Understanding challenges

Tasks/Challenges according to Al Act:

- Safety and Risk Compliance
- Data Quality
- Transparency
- Accountability
- Robustness and Security
- Ongoing monitoring
- Documentation

in Testing Al

How to test Al in practice?

- Defining the risk category: who, how and by which means?
- Which legal regulations and standards are relevant?
- Reducing the risk category level: is it possible, how?
- Testing: which methods to apply, how it depends on the role of the actor, who?
- Which tools/platforms to use?
-

Testing AI at Citcom.AI by RISE. Framework

Goal

Provide services for testing of AI systems in order ensure safe and secure AI in society and industry

Needs

Establish mature methodologies, procedures and platform for testing of AI systems incl. models, documented experience, customer requirements, mappings to AI act, standards and technologies

Approach

With a use case and context driven approach we explore potential services in testing of AI within the TEF which in future aims to lead to offering certification of AI systems

Benefits

The UCs are envisioned to connect, relate, and define how an AI model is tested, secured, and monitored by ensuring relevant activities and identifying potential AI testing service offerings based on real needs

Testing AI at Citcom.AI by RISE. Activities and Competence

Market Analysis:

- Code of practice
- Actors active in testing Al
- Existing tools/platforms

Understanding the legal part:

- Al Act
- Relevant AI Standards and Guidelines
- Participation in SIS/ISO activities

Technical work:

- Technical state-of-the-art reviews
- Development of testing approach incl. methods and tools

Use Cases design:

- Finding & Preparing cases and background for further testing
- Creation of pilot AI testing offerings

Ongoing UCs:

- District Heating (electric power and district heating provider)
- Testing RAG LLM (Swedish National Financial Management Authority)
- Intrusion Detection System (Scania)
- ..

Promoting and Advertising testing Al

- Presentations and WSs
- Communication with potential partners

Task/Deliverable

Methodology

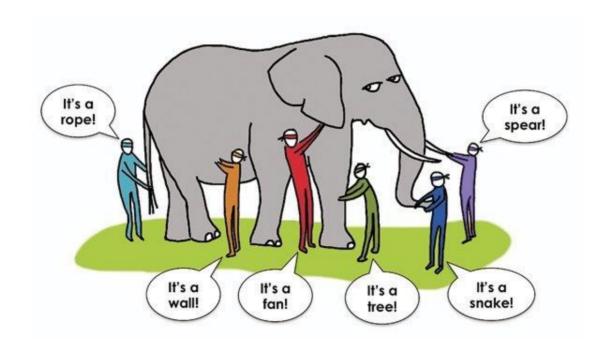
Technical Mapping

Legal Mapping

Test Procedure

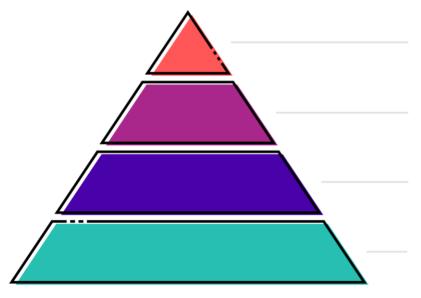
Mapping to Objectives

Packaging Service


Techical Workshops

Customer Interviews

Test Report



Make sense of testing AI systems

AI Regulation - risk categories

Unacceptable risk

Banned AI systems because they are seen as a clear threat to peoples's livelihoods and rights

■ High risk

AI systems subject to strict obligations and a conformity assessment before they can be placed on the market

Limited risk

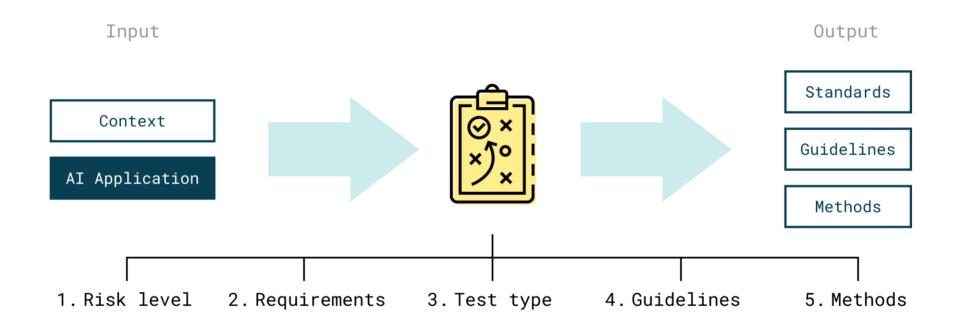
AI systems with code of conduct requirements and specific transparency obligations

Low or no risk

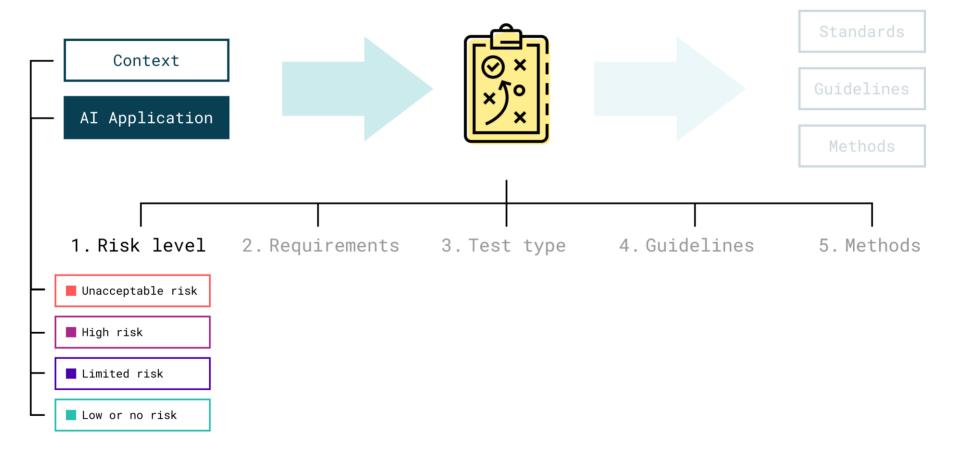
The majority of AI systems with minimal or no risk that can be used freely and are not subject to the AI \mbox{Act}

AI Regulation - risk categories

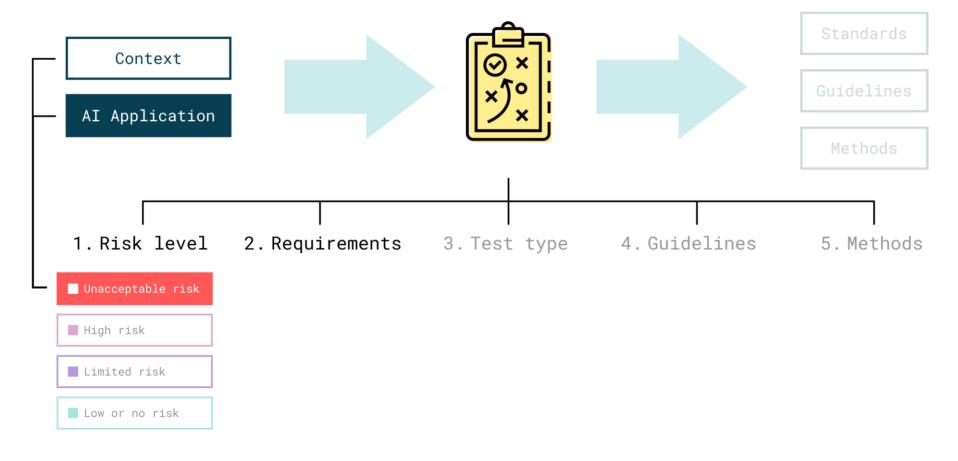
Requirements per risk category

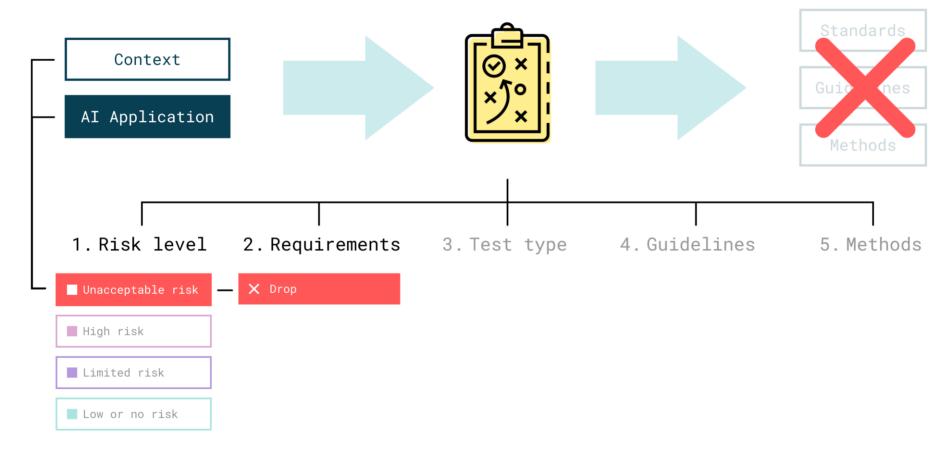

Robustness

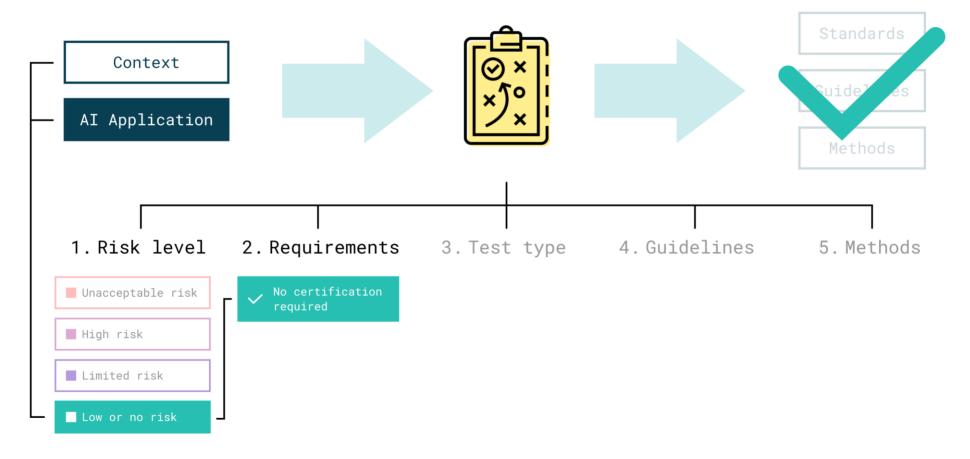
Article 15

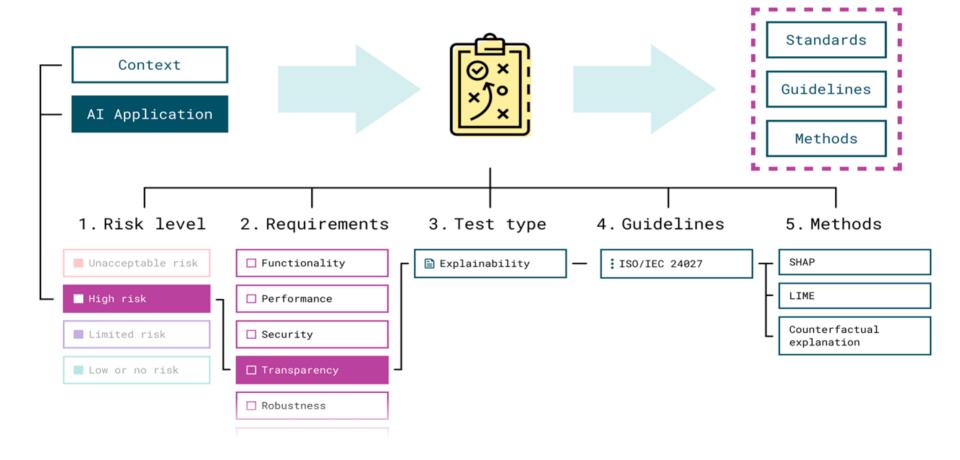

Documentation

Article 11 & 12



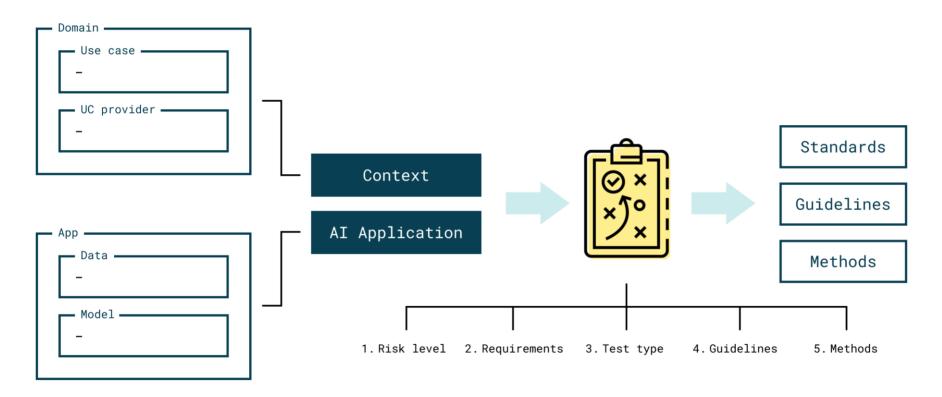






Mapping Standards

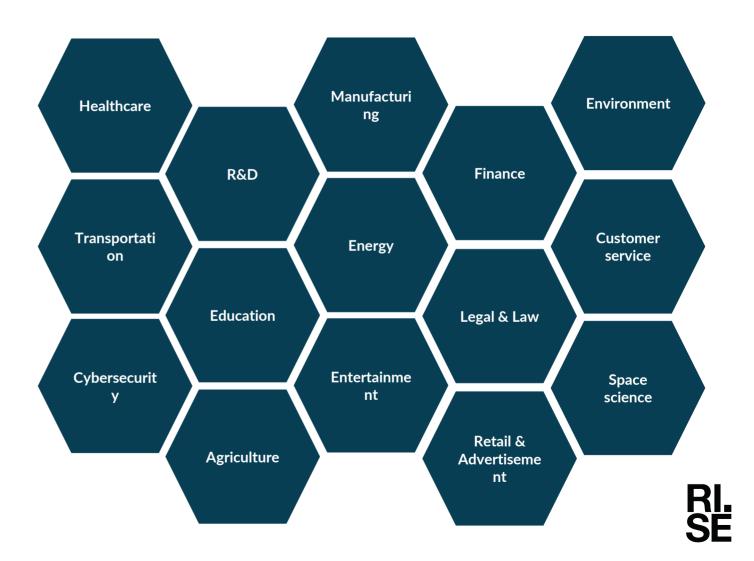
Classifica- tion and evaluation	AI Software quality	Security, trustworth- iness, privacy	Safety	Data quality & bias	Robustness and reliability	Ethical and societal concerns	Management & lifecycle	
ISO/IEC 29119 series	ISO/IEC 24028	ISO/IEC 25010	ISO/IEC 22989	ISO/IEC 5259	ISO/IEC 27000	ISO/IEC 24368	ISO/IEC 42001	
ISO/IEC 4213	ISO/IEC 12207	ISO/IEC 22989	ISO/IEC 5469	ISO/IEC 24027	ISO/IEC 24029	-	ISO/IEC 23894	
ISO/IEC 25059	ISO/IEC 25000 series	ISO/IEC 2382	-	ISO/IEC 8183	-	-	ISO/IEC 38507	
ISO/IEC 5471	ISO/IEC 23053	ISO/IEC 24028	-	-	-	-	ISO/IEC 5338	
Funct	ional	Non-functional						



AI Testing guidelines

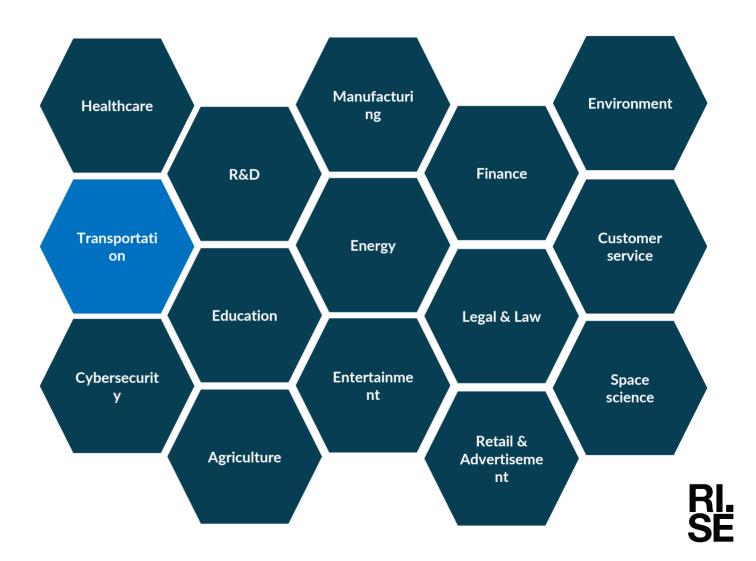
	Risk management	Data and data governance	Technical documentation	Record keeping	Transparency	Human oversight	Accuracy, robustness & cybersecurity
AI Act article	Article 9	Article 10	Article 11	Article 12	Article 13	Article 14	Article 15
EU ALTAI	Requirement 7,	Requirement 3,	Requirement 7,	Requirement 7,	Requirement 4,	Requirement 1,	Requirement 2,
Requirement	Risk management testing	Data quality testing	Documentation testing	Record keeping testing	Transparency testing	Human oversight testing	Security testing, safety testing

Our AI testing approach



Application domains Subfields of AI

Subfields of AI:


- 1. Machine learning
- 2. Deep learning (include DNN)
- 3. Natural language processing (include LLM)
- 4. Computer vision (image, video, voice)
- 5. Reinforcement learning (agents)
- 6. Robotics (autonomous)
- 7. Speech and audio processing (speech recognition)
- 8. Planning and scheduling (plan actions)
- 9. Evolutionary computing (genetic algorithm)
- 10. Affective computing (recognize feelings)

Application domains Subfields of AI

Subfields of AI:

- 1. Machine learning
- 2. Deep learning (include DNN)
- 3. Natural language processing (include LLM)
- 4. Computer vision (image, video, voice)
- 5. Reinforcement learning (agents)
- 6. Robotics (autonomous)
- 7. Speech and audio processing (speech recognition)
- 8. Planning and scheduling (plan actions)
- 9. Evolutionary computing (genetic algorithm)
- 10. Affective computing (recognize feelings)

Explainability in Automotive Intrusion Detection System

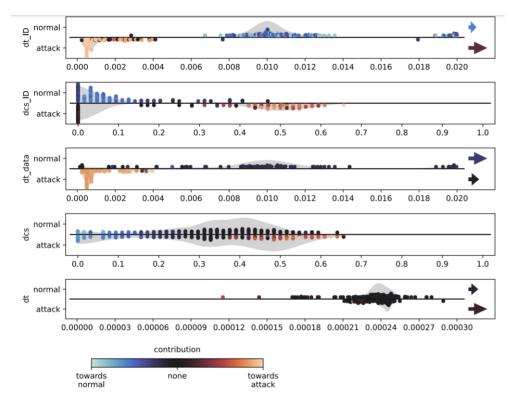


FIGURE 2. VisExp | A pseudo-global visualization-based explanation, using SHAP values. It shows the features in the dataset in swarm plot-like strips for normal and attack classifications. Each point is an instance from the train data. The x-axes are the feature values, and the color represents the SHAP values. The color of the arrows represent the mean of the SHAP values outside of the diagram, and their relative size represents how many data points there are.

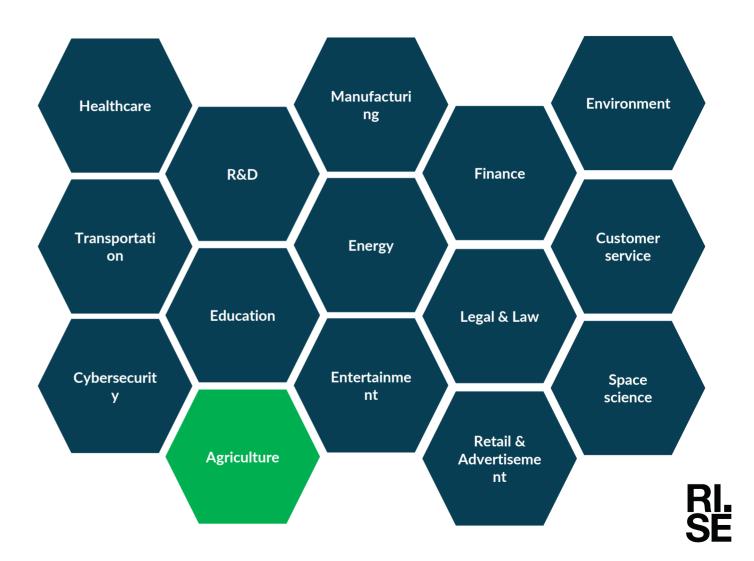
Hampus Lundberg, Nishat I Mowla, Sarder Fakhrul Abedin, Kyi Thar, Aamir Mahmood, Mikael Gidlund, Shahid Raza, "Experimental Analysis of Trustworthy In-Vehicle Intrusion Detection System Using eXplainable Artificial Intelligence (XAI)," IEEE Access, vol. 10, September 2022. (Link)

	Arbitration		Control		ntrol	Data	CRC		ACK			
S O F	ID	R T R	I D E	R B	DLC	Data	CRC	CRC Del	A C K	ACK Del	E O F	I F S
	Base: 11 bits				4 bits	0-64 bits						

FIGURE 1. CAN frame | The Survival dataset has features of the ID, DLC and data field, along with the timestamp of when a CAN frame is transmitted.

TABLE 1. DNN hyperparameters | Parameters and their values as specified when building the DNN in keras.

Layer	# of units	Description
layer_1	11	keras.layers.Dense
layer_2	23	keras.layers.Dense
layer_3	7	keras.layers.Dense
Hyperparameter	Value	
optimizer	"adam"	Optimizer algorithm
batch_size	200	# of samples in a
epochs	20	gradient descent # of training passes over the dataset


TABLE 2. The engineered features.

Feature	Description
dt [12]	Transmission time (s) between CAN frames
dt_ID [12]	Transmission time (s) between CAN frames
	with the same ID
dt_data	Transmission time (s) between CAN frames
	with the same data field
dcs	Data change score (ratio) between CAN frames
dcs_ID	Data change score (ratio) between CAN frames
	with the same ID

Application domains Subfields of AI

Subfields of AI:

- 1. Machine learning
- 2. Deep learning (include DNN)
- 3. Natural language processing (include LLM)
- 4. Computer vision (image, video, voice)
- 5. Reinforcement learning (agents)
- 6. Robotics (autonomous)
- 7. Speech and audio processing (speech recognition)
- 8. Planning and scheduling (plan actions)
- 9. Evolutionary computing (genetic algorithm)
- 10. Affective computing (recognize feelings)

Machine learning to classify peppers

- Al in an industrial computer vision system
- Trained deep learning model
- Images from 3D camera to distinguish between good and bad peppers
- Parallel robotic with pneumatic end-effector performs a sorting task of the peppers on the conveyor belt

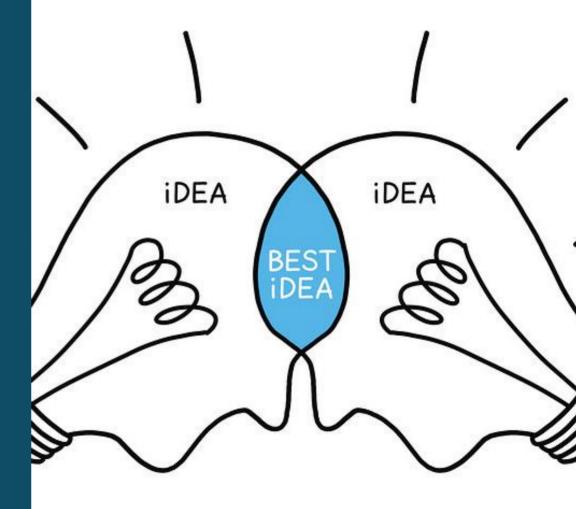
Expanding AI Testing Horizons: Expertise, Compliance, and Partnership

Despite being at the beginning of our journey, we have extensive experience in testing AI systems and are continuously gaining new insights.

We have developed specialized testing approaches tailored to meet unique challenges of testing Al. Our team is well-versed not only in the technical aspects of testing but also, we are learning to map the legal and regulatory requirements, ensuring smooth implementation and compliance across projects.

We are seeking partners and co-developers to expand our use-case-based approach, designed to create pilot testing procedures across the Al lifecycle.

Collaboration with Citcom.Al


Enhance Your AI Projects with Expert Testing & Evaluation

- We invite all AI projects to consider integrating comprehensive testing and evaluation of AI systems within your project scopes
- Adding structured testing and evaluation not only aligns with AI Act compliance but also strengthens your project by demonstrating a commitment to quality and reliability

How We Can Help

- Expert Guidance: Assist you in crafting testing and evaluation of AI systems
- Flexible Collaboration: Choose to conduct the testing yourselves or partner with us for joint execution

Reach out!

Nishat Mowla Senior Researcher, RISE nishat.mowla@ri.se

Trustworthy Al
Al Act translation to technical
testing
Machine Learning Scientist
Applied Al applications

Katya Mishchenko Senior Scientist, RISE kateryna.mishchenko@ri.se

Al Act translation to technical testing and Market Analysis Optimization, Al Testing Applied Al

Kabir Fahria Research Engineer, RISE kabir.fahria@ri.se

Software development Testing Al Machine Learning Operations Large Language Models (LLMs)

