

Generative Artificial Intelligence for Manufacturing

(Gen)Al for plastics and composites

Dr T.Timan

CT-IPC

tjerk.timan@ct-ipc.com

I P C

Centre Technique Industriel de la Plasturgie et des Composites

Generative Artificial Intelligence for Manufacturing

National Technical Center for plastics and composites converting industry

« Enhance the competitiveness of French plastics and composites converters...

... by carrying <u>R&D and technological transfers</u>...

... an generate knowledge to be shared amongst stakeholders »

TRL 4 → TRL 7-8

For an Ethical, Responsible and Environmentally-friendly plastics industry

Generative Artificial Intelligence for Manufacturing

Axe 1

Ecological and Energy Transition

- 1. Improving the eco-design of plastic products and develop new usage models (ex. reuse)
- 2. Ensuring the quality of Recycled Materials (PCR)
- 3. Developoing low environmental impact alternative solutions for a sovereign industry
- 4. Protecting human health and natural ecosystems

Axe 2 Digital Transition and Industry of the Future

- 1. Developing new processes and tooling to produce better, in France
- 2. Implementing digital solutions for design, production and control
- 3. Creating high-quality databases and secure their exchange for a resilient industry
- 4. Deploying new digital applications to support efficient production

Axe 3

High value-added products

- 1. Improving the life cycle of composites from design to end-of-life
- 2. Enhance the technical, functional and environmental performance of composites
- 3. Deploy plastronics in an innovative and responsible way
- 4. Give new properties and functionalities to the surfaces and volumes of plastic object

#ADRF24 Generative Artificial Intelligence for Manufacturing

Overview of opportunities along the value chain

Product design	Generative design tools + AI (lessons- learnt)
Materials and parts	GenAl for materials, Optimisation algorithms for mould design and cooling
Production process design	AI (not Gen) for material rerouting and shopfloor optimisation
Process monitoring and quality control	GenAl for simulation data and transfer learning + human feedback loops
Product lifecycle monitoring (including R strategies	GenAl for impact modeling and LCA gaps

#ADRF24 Generative Artificial Intelligence for Manufacturing

Example 1: Gen Al for design optimisation

- Goal: use algorithms to optimize cool flow tubes around a mold
- Generate options based on simulation data and practical experience
- Test virtually and optimize flow rates depending on several parameters (temp, visc, geometry etc).

Example 2: transfer learning for injection moulding

- Goal: optimize quality prediction and 'recipe' changes for process control
- Based on new sensors (IoT) and existing data on viscocity, temp and others (database IPC, moldflow) develop and train predictive model
- Digital DoE generate data to optimize via NNs

Putting in place multiple DoEs

- 3 variables :
 - Temperature

- 2 states :
 - static
 - dynamic

- Rotation speeds of the injection screw
- Material mix

Generative Artificial Intelligence for Manufacturing

Generative Artificial Intelligence for Manufacturing

Example 3: human in the loop

- Goal: improving quality inspection through human feedback
- GAN to generate thermal images
- Source of real thermal images
- Scoring of outcomes on quality inspection by algorithm – second layer of learning by humans in the loop
- Thesis project hosted at IPC
- Work continues in R3group project

#ADRF24 Generative Artificial Intelligence for Manufacturing

No Al without data...

Generative Artificial Intelligence for Manufacturing

Limitations, Challenges and Outlook

Limitations & Challenges

- Lack of data (but we have a data space for that!)
- Machine data still hard to work with (data act implementation?)
- No AI without understanding of the field (and hypotheses)
- Optimisation yes, discovery still low TRL

Outlook

- Building high quality datasets
- DoEs for transfer learning
- LLM based process instructor
- Connection to actuators and closed loop production (difficult in some areas such as IM)

